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Summary. Dipole Cauchy moments of the atoms through Ar are calculated 
using the hydrodynamic formulation of time-dependent Kohn-Sham theory. 
The exchange-correlation energy density functional is approximated by the 
gradient expansion for atoms. Using variational trial functions that contain 
both linear and nonlinear variational parameters, we are able to reproduce 
(to three or four significant figures) the static dipole polarizabilities obtained 
by explicitly solving the relevant differential equations. The resulting dipole 
Cauchy moments provide a convenient starting point for calculating other 
properties which result from the linear interaction of atoms with a time 
varying electric field. 

Key words: Time-dependent Kohn-Sham theory - -  Density functional the- 
ory - -  Cauchy moments 

1. Introduction 

The dipole Cauchy series is an expansion of the dynamic dipole polarizability as 
a power series of the applied frequency [1-5]. The Cauchy series is strictly 
convergent only for frequencies less than the first excitation freq'aency. However, 
using the method of Pad6 approximants this series can be summed within and 
continued outside its radius of convergence. The "pseudo spectrum" generated 
from the residues and poles of the Pad6 approximant can be used to calculate 
various optical properties of a chemical system which are manifested by the 
linear interaction between the system and an applied time varying electric field. 
Therefore, the Cauchy moments store a considerable amount of information 
about a chemical system. 
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Employing the hydrodynamic formulation of quantum mechanics for time- 
dependent Kohn-Sham theory [6-10], we calculate Cauchy moments for atoms 
through argon. Although the theory is in principle exact, its application is made 
inexact by the need to approximate the exchange-correlation energy EJQ] as a 
functional of the electron density. Thus the calculated results are only as good as 
the approximation employed. In the present set of calculations we employ a 
gradient expansion developed by us [11]. This approximation to E~¢[Q] is 
superior to most approximations when the number of electrons N is small and it 
goes asymptotically, for large N, to the Dirac [12] functional. 

The various Cauchy moments are obtained from variational solutions of a 
sequence of functionals based on the hydrodynamic formulation of density 
functional theory [8-10]. The chosen trial functions are sufficiently flexible and 
convergence is rapid enough to allow us to accurately reproduce the results 
obtained from the solutions of the differential equations. To ascertain the 
accuracy of our results, we compare our calculated static dipole polarizabilities 
to the accurate multiconfiguration perturbation theory calculations of Meyer and 
co-workers [ 13, 14]. 

2. Method of solution 

The dynamic dipole polarizability, for frequencies less than the first excitation 
frequency, can be written as a Cauchy series, 

cx(og) = ~ aio9 2i, (1) 
i = 0  

where o9 is the frequency of incident radiation and the a; are the Cauchy 
moments. Employing the hydrodynamic formulation of time-dependent Kohn-  
Sham theory [8-10], we may obtain the individual Cauchy moments from 

N 

a , = - 2  Y <g,i, klh°)lx~°)>, (2) 
k = l  

where N represents the number of electrons in the system, h (1) is the dipole 
moment operator and the g(k °) are the solutions to the set of unperturbed 
Kohn-Sham equations [ 15] 

h(°~z~ °~ = ~°~z(~°~. (3) 

Here h (°~ is the Kohn-Sham Hamiltonian with eigenvalues e~o~. The first-order 
functions ~ki, k are defined by the following sequence of functionals 

N 

Lo[{~bO.k }] = ~ ((~kO,k [h (°) -- e(°)kko.k ) + 2(~ko.k [h °) + ½v~')lz~°))), (4) 
k = l  

N 

Zl [ {nj_l,~ }] = E ({Z~°~q,-,,~ [h (o~_ ~o~ In~-,,~Z~ °~ > + 2<~,_1,k [ni-l,k [Z~ °~ >), (5) 
k = l  

N 
1,~(1) LE[{~/;,k}] = X (ff'.klh(O~--e~O~l~",k)+2(~',k~ "' +th-l.k[ z~°~))" (6) 

k = l  
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The quantity v~ ~) is defined as 

V,1)=2l lf ki, t(2) a (J[e] + L =  e(1)  e(2) =,,o) xl°)(2) dr2, (7) 
N 

where J[Q] is the coulomb energy density functional and Exc[Q] is the exchange- 
correlation energy density functional. The functional derivative is performed 
keeping the number of electrons fixed and it is evaluated with the unperturbed 
electron density Q(°). 

We prefer to determine the Cauchy moments by seeking variational solutions 
of the functionals defined in Eqs. (4)-(6). We show below that the variational 
process can lead to results equivalent to those obtained upon exactly solving the 
Euler-Lagrange equations. To insure that the variationally determined ~'~,k are 
orthogonal to the uperturbed functions X~ °), we choose trial functions of the form 

N 

- -   i,k = - Z °), (8 )  
l = l  

where the functions q~+,k, which are found by minimizing the functionals defined 
by Eqs. (4)-(6), need not satisfy any orthogonality relationships. In the current 
work, the functions q~;,+ and t~+,+ are approximated by 

U k l k -- Imkl 
q~i,k(r,o)) = E E C)~ik)( fo)rJ+tk-2;~e--#(k)rY~k+l--2z ,  ( 9 )  

j = l  2 = 0  

g'k lk -- Imk l 
t/i,k(r,a~) ,~/,,k(r,w) = ~ ~ D~¢)(og)r j + ' k - E ~ - ( ' k - ' )  Y ~ % ' - : ~  (10) 

j=  1 2 = 0  Y~k k 

Here nk, lk and mk are the principle, angular momentum and magnetic quantum 
numbers, respectively, of the unperturbed functions Z(k °). The sum over 2 defines 
the angular contributions to the q~,k and qj,k, which are given by the spherical 
harmonics Y~%~_E~(0,~b). These angular portions are fixed by the dipole 
selection rules. It is the radial portion of ~,k and qi,k which is varied. We thus 
minimize the functionals, defined by Eqs. (4)-(6), with respect to the linear 
variational parameters {CJ~'~ k)} and {DJ~i k)} as well as a nonlinear variational 
parameter fl~k) for each of the different angular contributions to q~/,k. 

We found that trial functions of this form are sufficiently flexible to provide 
rapid convergence to the "exact" static polarizabilities. By "exact", we mean 
values of the polarizability calculated by directly solving the Euler-Lagrange 
equations for a given approximation to the exchange-correlation energy density 
functional. Table 1 provides a comparison of our variationally calculated static 
dipole polarizabilities with the "exact" results of Stott and Zaremba [16]. These 
authors solved the differential equation associated with the minimization of Eq. 
(4), in which they used the Gunnarsson-Lundqvist parameterization [ 17] at the 
Ex~[Q]. For the sake of comparison, we temporarily adopted the Gunnarsson- 
Lundqvist approximation to Ex~[Q]. With Mk = 8 linear variational parameters, 
convergence to three or four significant figures in the polarizability was achieved 
and, as seen from Table 1, we were able to reproduce the "exact" results. These 
variational results were obtained without completely optimizing the set of 
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Table 1. Static dipole polarizabilities a 

Atom He Be Ne Mg Ar 

Differential equation b 1.63 43.0 3.00 69.8 11.8 
Variational I 1.63 43.0 3.00 69.8 11.8 

I 
a Results are in atbmic units. The Gunnarsson-Lundqvist  [17] form of  / 
the exchange-correlation functional was used in all calculations 
b Results obtained by Stott and Zaremba [16] 

nonlinear variational parameters. The set of nonlinear variational parameters 
used to obtain the results given in Table 1 were found by minimizing the 
uncoupled form of L0[{ff0,k }], which completely neglects v! 1~. Although polariz- 
abilities calculated with the uncoupled equation provide poor estimates to the 
"exact" values, these uncoupled nonlinear optimizations are orders of magnitude 
faster than the fully coupled nonlinear optimizations and the fl~k~ obtained are 
numerically similar. Since the values of the static dipole polarizabilities are not 
very sensitive to the set of fl~k~, this procedure saves a considerable amount of 
computer time without a significant loss of accuracy. The observation that 
knowledge of the exact set of nonlinear parameters is not very critical in the 
calculated polarizabilities has also been reported in time-dependent Hartree- 
Fock calculations [ 18]. 

3. Results and discussion 

Now that we have decided upon a method of solution, we must select the 
approximation to Exc[Q] that will be used in the minimization of Eqs. (4)-(6). 
Our choice for Exc[Q] is the gradient expansion developed previously by us [19]. 
Not only has this approximation yielded good numerical results in earlier work 
[19-22] but it does not suffer from the singularities which plague the usual 
graident expansion [23, 24] of E~c[Q]. Also, our approximation to Exc[Q] gives 
reasonable results when the number of electrons is small, unlike most other 
approximations, and in the limit that the number of electrons becomes infinite, 
our approximation to Ex~[Q] reduces to the Dirac functional [12]. Our earlier 
work employed variational trial functions that were too rigid for most atomic 
systems except for the rare gases. The current form of the trial functions is 
sufficiently flexible that convergence is rapid for all atoms considered. Thus, any 
error in the calculated numerical results should be attributed solely to the 
approximation to Exc[Q ]. To further establish the adequacy of our approximation 
to Ex~[Q], we used Eq. (4) to variationally determine the mean dipole polarizabil- 
ities of the atoms H through Ar. These mean polarizabilities are weighted 
averages over the different M,~ projections arising from the atomic ground states. 
The results are given in Tables 2-4. The variational functions contained Mk = 8 
linear variational parameters and the nonlinear variational parameters fl~k) were 
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Table 2. Static dipole polarizabilities (in atomic units) of H 
and He 

H He 

Present work 5.189 1.363 
Best theoretical 4.5 1.383 a 
Hartree-Fock 4.5 1.322 b 
Spin-polarized 4.436 

a Taken from [25]. Explicitly correlated wavefunctions were 
used in the calculation 
b Taken from [28] 

Table 3. Static dipole polarizabilities (in atomic units) of Li through Ne. These are weighted averages 
over the different M L projections arising from the atomic ground states 

Li Be B C N O F Ne 

Present work 139.2 42.07 21.95 12.00 7 . 3 6 6  5 . 2 5 6  3.868 2.931 
Best theoretical a 164.5 37.84 20.47 11.84 7 . 4 3 0  5 . 4 1 2  3 . 7 5 9  2.676 
SCF a 170.3 4 5 . 6 3  22.16 12.07 7 . 3 6 5  4.772 3.291 2.368 

Taken from [26] 

Table 4. Static dipole polarizabilities (in atomic units) of Na through Ar. These are weighted 
averages over the different ML projections arising from the atomic ground states 

Na Mg A1 Si P S C1 Ar 

Present work 153.5 73.00 76.46 4 5 . 3 3  2 9 . 5 3  21.18 15.75 12.07 
Best theoretical ~ 165.0 7 1 . 3 2  5 6 . 2 7  3 6 . 3 2  24.52 19.60 14.71 11.10 
SCF a 192.8 8 1 . 8 7  6 3 . 0 7  38.83 25.41 !9.17 14.20 10.69 

a Taken from [27] 

determined from the minimization of the uncoupled functionals as described 
above. As with the above variational calculations, convergence was rapid. These 
variational solutions again should yield polarizabilities which are nearly identical 
to the polarizabilities found upon exactly solving the appropriate differential 
equations. The second row of these tables lists very accurate values of the mean 
polarizabilities, which were determined using wavefunction functional tech- 
niques. The wavefunction functional result for He, which employed a correlated 
wavefunction [25] is in exact agreement with experiment. The multiconfigura- 
tional perturbation results of Meyer and co-workers [26, 27] have an estimated 
accuracy of + 2%. The third row of these tables contains mean dipole polariz- 
abilities as predicted by coupled Hartree-Fock theory. We include the Hartree- 
Fock results since the computational difficulty of the present calculations 
(actually any orbital-density functional calculation) is between that experienced 
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with the Hartree and the Hartree-Fock method. In addition, we believe that any 
viable method for calculating polarizabilities should be at least as good as 
Hartree-Fock, but preferably yield values that are closer to the accurate 
polarizabilities. As we see from these tables, this is generally the case for our 
density functional results. Except for H, Li, AI, Si and P, our results are in quite 
good agreement with the accurate mean polarizabilities. We believe that the poor 
agreement for H, Li and A1 may be attributed to the absence of spin polarization 
in our calculations. That is, we did not explicitly take into account the partition- 
ing of the density into spin-up and spin-down contributions. Writing our 
approximation to Exc[Q] in a spin (unrestricted) polarized form for H is straight- 
forward. Thus, we performed a spin polarized calculation on H and found a 
marked improvement in the predicted dipole polarizability. The result is listed in 
Table 1. It is in good agreement with the exact dipole polarizability of H. Our 
poor value for the polarizability of Li may also be attributed to the neglect of 
electron spin. Unfortunately, expressing Exc[Q] in a spin polarized form for 
anything other than a one electron system is not simple since its inclusion will 
require extensive modification of the existing computer programs. We are 
currently studying this problem. Another source of error is the quality of the 
unperturbed solutions X~ °), which is directly related to the error associated with 
the approximation to Exc[Q]. Looking at some previous work along these lines 
for He [21], it appears that the expression for ~E~[O]/60, as calculated from our 
gradient expansion, deviates from the true first functional derivative more than 
the calculated t~2Exc[Q]/~Q(1)60(2) deviates from the true second functional 
derivative. Thus, we may be able to obtain better results by focusing on 
corrections to our gradient expansion of Ex~[Q] which contribute to the unper- 
turbed energy. We are currently investigating the addition of terms to our 
proposed gradient expansion of E~[Q], which may have the desired effect. 

A much more sensitive test of our approximation to Ex~[O] comes from 
comparing the predicted dipole polarizability anisotropies, g(ML = _ I ) - -  
g(ML = 0). Our calculated anisotropies are given in Table 5 as well as those 
calculated by Meyer and co-workers [26, 27]. Unfortunately, our results are not 
in good agreement with the wavefunction functional values. However, all our 
calculated anisotropies have the correct sign, which is not always the case with 
wavefunction functional calculations [26, 27]. 

Now that we have established a degree of confidence in our approximation 
to Exc[O], we use it in Eqs. (4)-(6) to calculate dipole Cauchy moments for the 
atoms through Ar. Our results are given in Tables 6-9. The spatial part of the 

Table 5. Static dipole polarizability anisotropies (in atomic units) ot(M L = + 1) - ~ ( M  L = 0) 

B C O F A1 Si S C1 

Present work -4 .55  1.09 -1 .29  0.762 -58.1  14.2 - 4 . 6 6  2.70 
Best theoreticaP - 7 . 0 4  2.54 -0 .948 0.439 - 2 4 . 4  9.60 -4 .88  2.16 

a Taken from [26, 27] 
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amplitudes q~,k were given by Eqs. (8) and (9) and the spatial part of the phase 
q~.k was given by Eq. (10). Eight linear variational parameters (Mk = M~, = 8) 
were used for each symmetry type, as was one nonlinear variational parameter. 
These nonlinear variational parameters/~k) were determined from the minimiza- 
tion of L0[{(0,k }], Eq. (4). In other words, the nonlinear parameters used in the 
time-dependent calculations were determined from calculations of static (time- 
independent) polarizabilities. This simplification should not dramatically alter 
the calculated Cauchy moments. Also given in these tables are the predicted first 
dipole excitation frequencies, COl. These values of col were obtained from the 
radius of convergence of the Cauchy series [ 1-5], namely 

co~ = lim ai_l/ai. (11) 
i--* oo 

Since convergence of the ratio was rapid, we were able to obtain convergence to 
4 or 5 significant figures in the (D 1 when i = 25. 

Dipole Cauchy moments are directly related to the dynamic dipole polariz- 
abilities (for co <col) through Eq. (1) and they are directly related to some 
dipole spectral sums [29, 30] 

S(i) = ~ fjco~, (12) 
j = l  

through the relationship [1-5] S ( - 2 i - 2 ) = a i .  Here, the fj are oscillator 
strengths and the wj are transition frequencies. The Cauchy moments may also 
be used to calculate other properties related to the linear interaction of chemical 
systems with time varying external fields. For instance, using Pad6 summation 
techniques, the convergence of the Cauchy series, Eq. (1), can be improved 
[1-5]. The Pad6 approximant sums the series within its radius of convergence 
and furnishes an analytic continuation outside the radius of convergence. Fur- 
ther, the Pad6 approximants provide convenient methods for obtaining bounds 
to the dipole polarizabilities and dispersion coefficients [2, 5]. The Pad6 approx- 
imant defines a fictitious finite spectrum which approximates the exact spectrum 
of the atom. It is this fictitious (pseudo) spectrum that allows us to calculate 
other properties of the atom. These are properties such as spectral sums [29, 30], 
dynamic dipole polarizabilities [31], dipole two- and three-body long range 
interactions [32, 33], relativistic corrections to the van der Waals interaction [34] 
and Verdet constants [35]. 

Since the nonlinear variational parameters in the q~i,k(r, co) are determined 
from calculations of a0 = ~(0), the rate of convergence in the higher moments 
(ai for i > 0) depends critically upon the number of linear variational parameters. 
Within the context of wavefunction functional theory, Langhoff and Karplus [2] 
give a thorough discussion of this problem. Following their analysis, one would 
expect to find smooth convergence to the ai. Indeed, this is the case. For a small 
set of atoms selected to test convergence in the present work, rapid convergence 
is found in the first few moments. However, the rate of convergence gets 
progressively worse as one goes to the higher moments. In order to obtain the 
same high rate of convergence found in the static calculations, it will be 
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necessary to employ a set of nonlinear parameters for each of the ~i,k(r, 03). In 
many applications, converged values of the higher moments are not necessary to 
obtain good convergence in other properties. Although we have not found the 
exact solutions of the relevant differential equations for the q~i.k and ~i.k, the 
variationally determined Cauchy moments are sufficient to yield values for the 
van der Waals coefficients that have converged to 3 significant figures. This is 
acceptable considering the error introduced by the approximate Exc[0] may be 
more significant. We believe that the overall quality of the calculated dipole 
Cauchy moment, s is good, especially the lower moments, and they should lead to 
reasonable values for a number of generated properties. In general, they are 
better than Hartree-Fock moments and in some cases they are in good agree- 
ment with the correct values. Using the dipole oscillator strength distribution 
generated by the Hartree-Slater method, Dehmer et al. [36, 37] systematically 
calculated various spectral moments S(i), where - 6  ~< i ~< 1, for the atoms He 
through Ar. They did an impressive in-depth study, including logarithmic 
spectral sums. Comparing values of S ( - 2 )  = ct(0), our results are, for the most 
part, in closer agreement with accepted polarizabilities. 

As with the anisotropies discussed above, the calculated first transition 
frequencies provide a very sensitive test of our approximation to Exc[Q]. Compar- 
ing our values of eh to accepted values [38] shows that higher order terms are 
necessary in our gradient expansion. The calculated van der Waals dispersion 
coefficient C6 for hydrogen again show the importance of spin polarization. 
Using the nonspin polarized ai to construct a [5, 4]p Pad6 approximant, we find 
C6 = 7.83. However, the spin polarized at yield C6 = 6.25. This is in much better 
agreement with the correct values [39] C6 = 6.50. Further evidence of the 
importance of the consideration of spin is found upon comparing the values of 
o91 for the two cases. 

The dipole Cauchy moments tabulated here should be helpful to anyone 
interested in properties which are manifested by the linear interaction of atoms 
with a time varying electric field. Since we have performed a systematic set of 
calculations of the atoms through Ar, our data may also be useful in studying 
the variations or trends in linear optical properties. This work has also identified 
deficiencies in our gradient expansion of E~c[Q]. However, it has provided insight 
on how we might correct some of the problems. Work is in progress to expand 
the current set of calculations to the transition metals, higher multipoles and an 
improved gradient expansion. 
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